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In paper p] the plane problem of the indenting of an elastic layer by a rigid die by a flat 

base is solved . 

The solution is obtained in the form of a series which converges in some interval 

O<h<c#oo(h=h!a is the relative thickness of the layer) . However, this 

method is not applicable if zx- - er # z, (k, 1 and m are any integers ; this is in the 

notation of [2] ) . Moreover, the characteristic singularities which occur at the points 
where the boundary conditions change are not separated out in the solution . Also, the 

convergence of the series is not established in the whole interval 0 4 h co3. 
Another approach to the investigation of this kind of problem is proposed below, based 

on a study of the corresponding integral equations [Z] . The solution is obtained in the 

form of a series which converges in the entire interval 0 2 i <a . 
An approximate method is presented which makes it possible to write the solution out 

in a form which is convenient for practical use . An example is given . 

1. We first give an algorithm which permits us to construct the solution of an infinite 

series of linear algebraic equations under certain conditions . 
We shall investigate the system [Z] 

[A +B (@)1X = D (14 
where A and B (CJ ) are infinite matrices , K and D are infinite dimensional vectors, 

or, equivalently, infinite sequences : A 
-1 

is the inverse of the matrix A . 
We shall consider as proved the existence of a unique solution of the system (1.1) 

belonging to a subspace Cl of the space m [3] , when D E .s,. 
Here Cl consists of infinite sequences such that 

and S1 is such that if Y E sl, then AA-l* Y is associative , 
We shall assume the following properties f “) of the infinite matrices: 

“) These conditions are sufficient for quasi-regularity of the corresponding system repre- 
sented in canonical form . 
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1) The elements of the matrix B(a) are functions which may be continued ana- 
lytically in the complex plane, are regular in the region Re 2~ 0 and all approach zero 

as ReZ*CO; 

2) A-lB (2) (Cl -+ Cl) 

3) B (2) x E s, ior XECI (P<Rez<m) (1.3) 

4) IWfB (4 Ilm < cc2 

5) For some D E s, the expression A-ID = X, E cl. 

We shall denote an infinite matrix all elements of which are zero except the elements 

of the first n columns by &(a) . 
Lemma. The solution of the system 

LW-R&)lL=~ (Rez> PI (1.4) 
is determined by the recurrence relation 

A-’ = (‘6Z, k (0)) 
The following notation is used in (1.5) 

(1.5) 

IA t B,i @V I% (2) - B,-1 Ml = (~z,n (k)) V-6) 

[A + 8, HI-’ = ( 

e&c-1) 
~~,,(k--l)-~k,,(k--l)~+~~,k(h_i)) (1.7) 

A solution does not exist here (is unbounded with respect to the norm of m ) on the 

countable set of zeros of the function 1 + 6 D, ,(n - 1) . 
In order to prove this, we ptemultiply Equation (1.4) by A-l (by virtue of the assump- 

tions (2), (3) and (5) this can be done) and we rewrite (1.4) in the form 

x, = X0 - A-l& (2) x, (1.8) 

Setting 72 = 1 and taking ReZ sufficiently large, we can find, in view of the assump- 
tions (1) and (4), a Z. such that 

II A--‘& (s) II m < 4 < 1 (Rez > Rezo) (1.9) 

The method of successive approximations can then be applied to Equation (1. 8), which 

nermits us to write the solution in the form 

x1 = [I + k$, (- V (A-r& (z))b] x0 (1.10) 

Using the notation (1.6) and (1.7) , we obtain (1. 5) with ?J = 1 for ReZ 2 ReZo . 
It is easy to show that the analytic continuation of the function xl in the region 

p 5 Re 2 c Re 2, carried out with the aid of (1.5) also satisfies Equation (1.4) for all 
Re Z 2 p , except for the points which are the zeros of the function 1 + Cl, l(O) . 

To construct xn , we rewrite (1.4) for n = 2 in the form 

[A + B, -j- Bz - B,] Xz = D (1.11) 

If the matrix [A + & ] -’ is known, then the conditions of the first part of the proof 
are satisfied . To obtain this matrix. it is necessary to solve Equation 

[A + B,] Y = I (1 is the identity matrix) 
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The solution of this has the form (1. ‘7) for k = 1 l which is obtained in just the same 

way as Xl I Thus, & can be written in accordance with (1.5) for r2 = 2 l 

Repeating the process 7% times, we obtain x, which, as can be verified, may be 
unbounded at the points indicated in the lemma . 

Theorem . If (2) to (4) are satisfied uniformly with respect to z in the region 

0 <a 2 ReZ<m. then /lx-x./[-m as n-03, 

Here x = x{z) is the solution of Equation (1.1) when B = B(z) . 
The solution obtz.ined may be unbounded at the points satisfying Equation 

lim[l-+-~,l,,(n-~)j-O (1.12) 
n+cc 

By virtue of condition (4), an fl can be found so that for ?2 > N 

II A-’ (B - B,) l&a e !? < 1 (P d Rf? 2 < m) (1.13) 

It is then possible to apply the method of successive appro~matio~ to Equation 

(d -k 3 - 3,) 2, = I) 

and to write its solution 2, E c, in the form 

(1.15) 

The inverse of the matrix corresponding can be represented in the form 

&lo-’ = (A + “B - B&l = f -t_ 
1 

g (- l)k [n-l (U - B,)]k A-’ (1.16) 
I; =t 1 

We now rewrite the original equation (1. I) in the form 

(Al 3; Kt (ZN x = D (A, = A + 3 (2) - &l(z), Q > N) (1.17) 

The lemma which has been proved above can be applied if the matrix AOvl of Equa- 
tion (1.16) is taken as Aa1 and 2, of (1,112) is taken as x0. It is easy to verify that 

the necessary conditions (1) to (5) are satisfied in this case as before . 
Therefore, on the basis of (1,14} and (1.15) , the solution of the original problem 

(1.1) can be written out in the form x = K(i?,) , which is bounded almat everywhere 
in the right half of the complex plane and is analytic there. Taking any other number 

k > #, we can find the solution x = x(2,) , where at all points of analyticity in z 

x (GJ = x (Z?J (1.18) 

These. two functions are analytic and coincide for Reir > ReZ’ p], But then, 
because of the arbitrariness of 77, in the relation (1.18) , we can pass to the limit ??,*a 

and here for fixed k the identity is not violated . Then, however, from Equations 
(1.15l;nd (1.16) it is evident that x0 may be taken as 2, and correspondingly 4-l 

asAo . This last result means that the theorem is proved . 
Let us determine the error in the 7’&th approximation _ We take 7~ > 8 and find the 

solution x, of Equation (1.4) l Then the solution of Equation fl. 1) can be written in 

a form analogous to (1.14), viz. 

x= {I + ; (--I)“[d-‘(B--B,)]k}X, (1.19) 
k=l 

From this we obtain the estimate 
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Since the solution x, is almost everywhere bounded as 

IIX- XII II -+ 0 at the same rate as lI0B-B, )1/n- 0. 
By requiring that the argument z in the solution X(Z) 

I! XT2 i/ (1.20) 

n-302. it is clear that 

be on the real axis, we obtain 

the solution of the system (1.1) , It is only necessary to verify that the given U does 

not belong to the set defined by the condition (1.12) . 

20 We shall now reduce certain integral equations to infinite systems of linear, alge- 

braic equations . 

a) Let us examine Equation 
a 

s 
k (z - EJ ‘I, (E) C/E = 7ct%, k (1) = 

*L(u) 

5 
7 COS uf du (IXI<a) (2.1) 

- c 0 

where U”_L (U) is a meromorphic function whose properties are described in detail in 

/J?] , A solution Y, (x) E L, (-a, a) is sought . As is shown in [2] , the solution of 

this integral equation has the form 
M 

q,, (2) = K-l(y) ei3” + 2 I&+ (a, 71) csp iz, (a + z) + ?lls- (Cl, 21) t’xp izi, (a - x)] 

it=1 

y+ (?/k+) E Cl> Y- (y/k-) E Cl (2.2) 

The corresponding infinite system is representable in the form (1.3). where 

(2.::) 

Yk+ (4 11) = !!k- (a,-- q), “1 * = Y,? f 1/l--, x = (xl*) 

in which either the upper or lower signs must be taken throughout. 

b) Let us consider Equations 
2x a 

s s 
4 4(p. $)k(r, P, 9, $Cl)pdp= 2fiJ,(v)co:‘nq (O<cp<2n, O<r<a) (2.4) 

0 

Using the represen:ation of the function L (U ) in the form of the sum of its principal 

parts and also applying the “addition formula” for Bessel functions, we may rewrite 

Equation (2. 5) in the form (2.6) 

I, (?‘,P) K, (&J) r > P 

m=l k=O 'k(&F)Kk(&,P)r<P 

IJ k" 
0 (i fit), 

1 (i = Ji), 4, = ir,, Zm = i6, 

where & (2) is the Bessel function, and I,( 2) and Kn (2) are the modified Bessel 

functions . 
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Just as in p] , it can be shown that the solution of Equation (2.6) 

‘I ($ $7) E f.1 (0, n; 0, 2n) 

where the D,, k are the elements of an infinite sequence I’,, f cr. 

In the same way as in [2], we obtain the following infinite system for the determina- 

tion of the U,? k : 

II& (~,a) J,_, (~4 + T,& (~,a) J, (rl~) 
(V + T,‘) h’ (rl) Kn (rma) 

(m = l,“, . .) (2.8) 

We now examine the limiting values of the left-hand side of the system (2.8) as 
a-m. Making use of the asymptotic formulas for the Bessel functions, we find, in the 
limit, Expressions of the form 

(2.9) 

The system (2. 8) can then be represented in the form (1.1) if the following notation 
is introduced : 

A -=(a IJ=(d_)=(i qK, h,4 J,_, (v) + Y,k’,-,(T,a) Jn (WI 
(V + r,‘) K (v) Kn (?-,a) 

xc 2 i’ ) 1 
(2.10) 

It is obvious that by virtue of (2. 9), and of the fact that the elements of the matrix 
B (2) are analytic in the right half-plane, these elements vanish as ReZ -+ m , 

Let us find the expressions which are needed for the application of the results of Sec- 
tion 1 to the systems which have been obtained . In the case of Equation (2.1). we 

have P] 

= * K+’ (- ~~1 (z, + zr) ’ Zl, r 0)) = --Fl 
1 

[A_ @&.)j’ R+’ ( - zl) (5, - 20 (3m1i) 
The corresponding expressions for Equation (2. 4) can be represented in the form 

03 

“l(O) = 21 Tl, Ta (0) ‘qn = 
iJ,_, (~1 [(rl + zl) K_ (rl) + (rl - zr) K+ (~)l 

m=l 
=-+’ (-- ZJ (11” - z12) K (rl) 

iJ, h4 h’,_, (- iw) K,, (iv) 

- 4K+’ (- Z/) {[ (‘1 - sl) K, (- ina) K+ (11) - (q + zI) Kr, (+j K (rlj 1 - 
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1 O3 
S 

IK,_~ (- ita) K_ (1) rlt 
-” P’ si tt- 21) (t” -q)Kn(--zq 

-cm 

El, m (0) I 2 rl, k (0) Irk, m = jK, (- ;~;“p$-;y)Kt w + 
k=l f I 

+ 

In (- izmu) K,, (- iz,u) 

2niK+’ (- Z[) 

tK_ (I) K,_l (- ita) dt K, (Q K,_, (- fZrn”) 
(t-zZl)(t.:--,7m’)h’n(--~~ +2ni 2zm(Zm+Zpn(-iz,a) -Ln 1 

(2.12) 

NOW, in order to apply the results of Section 1 to the infinite systems (2.3) and (2.10). 
it is necessary to verify that the conditions (1) to (5) are satisfied . It is obvious that 
the condition (1) is satisfied in both cases . In order to verify that the conditions (2) to 
(5) are satisfied, we give the following estimates p] which can be easily obtained from 
(2.3) and (2.11) : 

A=(a,J--(A), U-:;(br,‘)“(~), lk(d,.)-(f) (2.1:3) 

x0 (“, (6)) - PiY), A-’ = (tt, J - (-&$1 (r-300, l+e,O<r<l) 

The corresponding estimates for the case of the second system (2.10) have the same 
form as (2.13) for all the matrices except the matrix B. The following estimate is 

obtained for the matrix B : 

B = @I., 1) - i([ -1, pz + (p__& z 1 
(I -+ w, z---) co) (2.14) 

All the estimates of the elements of the matrices of (2.13) and (2,14) are given cor- 
rectly up to the factors of the form c In 4 and c In r . 

In what follows we shall use the following result, the proof of which is omitted for the 
sake of brevity . If X = (q) E rl, then 

$ & = Yr’ y = (!/J E m (r = 1, 2, . . .) 
(2.15) 

y, = (I&’ -y In r) E cl (O<r<i) 

The prime of the symbol c denotes that the term corresponding to ?” = 4 is dropped . 
To enstire that, for instance, (2) is satisfied in the case of (2.141, it is sufficient to 

prove the convergence of the series 

5; 51 rl,rbr,klJ-l 
I=lr=l &El 

This series is majorized by the series CJ (C = const ) 

J=~~%!t Fy,l’_,,&q(++!$) 
I=1 r=l k=l 

Then, op the basis of(2.15), we obtain 



Integral equarions of the theory of elasticlry and mathematical physics 87 

Now it has also been proved that condition (4) is satisfied . It is clear that we can 

take any number as close to zero as desired as p (see (2) to (5) ) . 
In a completely analogous way we can verify that all the conditions (2) to (5) indicated 

in Section 1 are satisfied , 
Thus, the result of Section 1 is applicable to the infinite systems (2.10) and (2.12) , 

Their solutions can be written as the limit for 72 --)a of the recurrence process (1.5) , 

Requiring now that the argument z in the solutions of the systems which have been 

obtained vary on the positive part of the real axis , and constructing Expressions (2.2) 

and (X7), we find the solutions of the integral equations (2.1) and (2.4) . It is now 
necessary to ensure that the solutions xk which have been obtained are bounded as func- 

tions of a for a > 0 , i e. that there is no value al > 0 such that some xk (a) + ~0 
as a -al . Or, in other words, we must verify that the real axis does not intersect the 
set determined by Equation (1.12) . 

We shall restrict ourselves to the case of Equation (2. 1). since for Equation (2. 4) every- 
thing is carried out in an analogous manner . 

We sha.11 assume that a uniqueness theorem holds for Equation (2. l), i. e. that from 
Equation a 

s k (z - 4) q (4) dS = 0 (Ixl\(a, (J<a<m) (Z.ifl) 

--a 
it follows that q (E) zz 0, 1 5 1 < a. 

Let us assume that (2.2) is the solution of Equation (2.1). Then 

a 

h--l (11) s k (z - E) einz k (z - 5) CXP iz, (a + E) dE + 
--a 

a + ; [Y1’ (at 11) f 
I=1 --a 

(I 2 I d a) (2.17) 

Taking into account the linear independence of the functions exp i?-tx, exp 6~~ X 

(k= 1, 2, .,.) and also the condition (2.16). we can see that all the terms on the 
left-hand side of the identity (2.17) are linearly independent functions and, therefore, 
that the terms containing coefficients which might be unbounded can be regarded as 

mutually independent . 
Let us assume that some &+(a , r) ) - w for CZ + a1 . But then from the bounded- 

ness of the terms of the series of (2.17) for all a , it follows that 

which contradicts the condition (2.16) . Thus, all coefficients of the expansion (2.2) 
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are bounded for O < a c 00 , and it follows from Equations (2.3) that the corresponding 
zk (a ) are also bounded . 

3, Let us examine+the case of Equations (2.1) in greater detail ~ By finding corre- 

sponding values of Y and r on the basis of Equations (2.11) and substituting into 

(2.2), we can write an expression for c/,,(E) in the form 

qri (~1 = K-’ (71) e’l’” - K;r(n) e-rrla II, (ill, a + 5) - K--I (q) e~fia 4 (- irl, n _ z) $- 

+ ; [Gk+lQ (- iz k’ a -t 2) + Gt- q (- iZk’ a -z)] (3.1) 
=kl 

The quantity U i is obtained from the expansion 

=k - 0 (exp ZlziZk) (k --* 00) (3.2) 

Considering that $ ( ‘T , $) is the solution of a Wiener-Hopf integral equation of the 
following form : 

we can formulate the result obtained in (3.1) as follows . The solution of the integral 
equation (1.1) can be expanded into a series (of the form (3 1) ) of solutions of the inte- 

gral equations (3.3) with T = - 5 2 Ir . The coefficients of the expansion are obtained 

in accordance with Equation (3.2) . 
The set of the first three terms of the expansion (3.1) provides the zeroth term of the 

asymptotic solution of Equation (1.1) for CZ * CQ , which was first obtained in [4] , and 

somewhat later in [5] . The additional series is a regular expansion of the remainder 
term . As is apparent from (3.2), this series converges like a geometric progression, 
and its convergence deteriorates only when U- 0 . 

A representation which is analogous to (3.1) can also be given for the solution (2.7) 

of Equation (2.4) , However, in view of its complicated character, this formula is not 
given (it can be obtained on the basis of the relations (2.7), (2.12) and (1.5) ) . We 

mention that the corresponding ok, unlike (3.2), are now of the order 0 (4 Z,a ) . 
In the practical use of the results which have been found, it is important to be aware 

of the fact that if the process (1. 5) is terminated at the ?Zth step, then in Expression 
(3.1) a partial sum consisting of the first n terms is obtained instead of the whole series, 
This makes it possible to control the accuracy of the results obtained, by investigating 
the orders of the successive terms which are given . 

We note that if the approximate solutions Q and Q of equations (a) and (b) found 

by the method indicated above have a certain zccuracy for CY, = CT * , then this accuracy 

is not reduced for values a 2 CZ * . 
This fact permits us to construct a combination of solutions with the required accuracy, 

consisting of solutions obtained by other methods for 0 < a SU a and the solution 
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obtained by the method proposed above . It is sufficient to construct Q and q with 

the required accuracy for U = U *. 7 

As an example, let us consider the integral equation of the plane contact problem of 

the indentation of a perfectly rigid flat die into an elastic strip which rests without fric- 
tion on a rigid base [6] . There is no friction between the die and the layer . 

The integral equation can be represented in the form of (2,l) _ We introduce the 
noration 

where al is half the length of the line of contact, h is the thickness of the layer , 
g,*( 5) is the contact stress, and 77 A /h is the right side of the integral equation, with 

L (u) K(u) ZCZZ y - * 
sin$zu E 

24 (shh.zu + 2u) ’ A = 2 (1 - ci”) (3.4) 

By factorizing K( U ) into an infinite product, we can write the solution of the inte- 

gral equation in accordance with (3.1) (*) l However, it is difficult to obtain formulas 
which are suitable for practical use in this way , 

ft is I therefore , proposed to carry out a twofold approximation, namely 

where r( &) is the gamma function , and pk and Yk are even polynomials of equal 

degrees . The use of the approximation (3.5) permits us to represent the function 
$ ( 7, 6) in the form F] (and by the same token to separate out the characteristic 

singularity for $ = 0 ) 

* (*, t) = R++ (i-r) erf erf c WEB -j- t) t - @ct)-0’6 eWBt - z cs (i) erf ?(B - i&) t 

k=l 

(3.7) 

where ck are the roots of the polynomial p1 which lie in the upper half-plane II 
The approximation (3.6) allows us to obtain U k in a rather simple form, as for 

example 
c1+ (q) = 

cl (-- q) Pa - e,, 1 cl (11) eWflia 

1 - %I2 
K, (21) exp ZUiZl (3.8) 

For the approximation (3.5), the expressions which occur in (3-T) are easily computed. 

The possibility of introducing the approximation (3.5) and (3.6) follows from the 
facr that the solution q,, (Q in (3.11) can be written in the form of integrals afong the 

real axis containing the functions K+(U) and ‘a (U) . Consequently, the solution does 
not change greatly if these functions are replaced by their approximations . 

In the case of problem (3.4), the approximating functions corresponding to (3.5) and 

(3.6) have the form (JYk and Fk are of fourth degree) 

“) The presence of multiple roots in the function K(rL ) is obviously unimportant, It 
is possible. for instance, to pass to the limit in the equations, considering that two 
neighboring zeros coalesce. 
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JGp- (u’ -j- 12ficp” + !i!(r.fm) tanh 0.5 u rc* J, 5.lG80 I/? + 4.6X7 
(u2$ 2) (U4f 10.115 U~-t_2/1.0!)2)’ 

-- 
11 {J4 + $.3:j7~(ty -i_-$;j- (R.!)) 

Er = 1.571X, iz := 3.16231, z1 = 1.0812i, z9 z-7 2i, z,,,~ =: ?~ni 

The error of this approximation does not exceed 2. Y$‘o . 
We shall now attempt to construct the solution of the problem correct to three signifi- 

cant figures for the values 0.25 53 iz < 03 , using the approximation in (3.9) l In order 
to do this, it proves to be sufficient to take two terms of the series and the principal 
component $1(x> of the third term, since aI1 the succeeding terms do not affect the 
third significant figure for G$ = 0.25 , 

The solution may be written in the form 

q. (2) = Ah-’ (2 - V’Z [$ (0, a + 2) f Q (0, a - x)] -+ C.T~ [Q (1.0812, a + 2) + 

-j- Q (1.0812, a - z)] + oz [Jr (2, a cl; z) +- Q (2, a - z)] -+- q1 (3 t_ o (e-12.s66a) 

(3.10) 

In Equations (3.10) 

e = 0.046420 e-2.1623a, 1,1 e,aa = - 0.025385 e’4a 

eI,, = 0.028681 e-@, e 2,1= - 0 * 037433 e-s~lssaa 

x3 (0) 0.35836 e-12.668(r ,-(atxt 
QlC4 = (1 -I- e3.3) T/zca---tr_~+ 

For comparison, we give the results of calculations for p” = ~~4~(~/~ according to 
(3.10) together with the corresponding result obtained by the method of large k = h /al 
due to Aleksandrov [6], 

x- 0 0.2 0.4 0.6 0.8 0.95 

q* =0.586 0.590 0.632 0.717 0.934 1.755 0.551 
qle,= 0.597 0.608 O,F45 0.730 0.%X 1.809 0.562 

The last column of the table contains values of 

lim Van - z%lqo (2) / A 
X-Ml 

Apparently, the difference in values of the solutions which are seen from the table 

arise as a result of use of the approximation of(3.9) , Numerical analysis indicates that 

the bigger a is, the more stable is the solution as regards approximations . For instance, 
for a = 0.5 , the deviation of the solution (3.10) from the corresponding solution ob- 
tained by the method of large h is reduced to under 1. 5% , 

The author thanks I, I. Vorovich and V. M. Aleksandrov for the attention they have 
devoted to this work . 
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